## Calculus AB

1-3
(Day 3)
Evaluating Limits
Analytically -Trig Limits

Theorem
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Theorem
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$
For proofs of these theorems, see the text book.
They require the use of the Squeeze Theorem.
Evaluate each limit.

1) $\lim _{x \rightarrow 0} \frac{3 \sin (3 x)}{3 x}=3.1=3$

For the $\sin (x) / x$ theorem to work, we need the same argument in the denominator as in the parentheses.
bottom both by 3 .
2) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\frac{\sin x}{x \cos x}=\frac{1}{\cos 0}=1$
3) $\lim _{x \rightarrow \pi} \frac{\sin x}{x}=\frac{0}{\pi \pi}=0$
4) $\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x}=\frac{(1+\cos x)(1-\cos x)}{x}=0$

$$
\begin{aligned}
& \text { Find } \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{\left[(x+\Delta x)^{4}-1\right]-\left[x^{4}-1\right]}{\Delta x} \\
& \text { 5) } f(x)=x^{4}-1 \\
& \lim _{\Delta x \rightarrow 0} \frac{x^{4}+4 x^{3} \Delta x+6 x^{2} \Delta x^{3}+4 x \Delta x^{2}+\Delta x^{4}-x^{4}+1-1}{\Delta x} \\
& \lim _{\Delta x \rightarrow 0} 4 x^{3}+6 x^{3} \Delta x^{0}+4 x \Delta x^{2}+\Delta x^{3}=4 x^{3}=4
\end{aligned}
$$

Assignment:

$$
\begin{aligned}
& \text { Pg. } 68 \\
& 65-88
\end{aligned}
$$

